

NAD⁺ as a Hydride Donor and Reductant

Yamin Htet[†] and Andrew G. Tennyson^{*,†,‡,§}

[†]Departments of Chemistry and [‡]Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States

[§]Center for Optical Materials Science and Engineering Technologies, Anderson, South Carolina 29625, United States

Supporting Information

ABSTRACT: Reduced nicotinamide adenine dinucleotide (NADH) can generate a ruthenium-hydride intermediate that catalyzes the reduction of O_2 to H_2O_2 , which endows it with potent anticancer properties. A catalyst that could access a Ru-H intermediate using oxidized nicotinamide adenine dinucleotide (NAD⁺) as the H⁻ source, however, could draw upon a supply of reducing equivalents 1000fold more abundant than NADH, which would enable significantly greater H₂O₂ production. Herein, it is demonstrated, using the reduction of ABTS^{•-} to $ABTS^{2-}$, that NAD^+ can function as a reductant. Mechanistic evidence is presented that suggests a Ru-H intermediate is formed via β -hydride elimination from a ribose subunit in NAD⁺. The insight gained from the heretofore unknown ability of NAD+ to function as a reductant and H⁻ donor may lead to undiscovered biological carbohydrate oxidation pathways and new chemotherapeutic strategies.

R edox reactions provide the chemical motive force essential for all forms of life.^{1,2} Reduced nicotinamide adenine dinucleotide (NADH) supplies two e^- to mitochondrial electron transport by donating H⁻ from its hydropyridine moiety (Scheme 1, blue box) to flavin mononucleotide.^{3,4} Conversely, oxidized nicotinamide adenine dinucleotide (NAD⁺) accepts two e^- from glyceraldehyde-3-phosphate or lactate dehydrogenase by accepting H⁻ into its pyridinium moiety (Scheme 1, purple box).^{5,6} The H⁻ donating ability of NADH has been harnessed for catalytic applications ranging from the reduction of O₂ to

Scheme 1	. Hydride	Transfer with	NADH	and NAD ⁺
----------	-----------	---------------	------	----------------------

cytotoxic H_2O_2 in cancer cells^{7–9} to petroleum-free H_2 production¹⁰ to alcohol deracemization.¹¹

Free NAD⁺ is 640–1100 times more abundant in cells than free NADH;^{12–15} therefore, a catalyst that could utilize NAD⁺ would have access to a significantly greater H⁻/e⁻ supply than NADH. Because catalytic carbohydrate oxidation can be performed by enzymatic¹⁶ and transition metal-based systems,^{17,18} we reasoned that oxidation of a ribose subunit (Scheme 1, red boxes) could enable NAD⁺ to function as a reductant. Catalytic oxidation of ribose has been achieved by a Ru complex to afford ribonolactone with concomitant H₂ transfer to an alkene.¹⁹ We therefore hypothesized that (1) a ribose subunit in NAD⁺ could similarly undergo oxidation by a Ru complex via some form of H⁻ transfer to the metal center and (2) the resulting Ru–H species would exhibit catalytic reduction activity. Herein, we report the first instance of H⁻ donation via β -hydride elimination from a ribose subunit of NAD⁺, which enables NAD⁺ to function as a reductant.

To probe for Ru–H formation, the conversion of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) radical monoanion (ABTS^{•–}, Scheme 2A) to ABTS^{2–} was selected as a spectroscopi-

cally more convenient reduction reaction than the conversion of O₂ to H₂O₂, given that ABTS^{•-} consumption can be quantified at significantly lower concentrations and longer wavelengths than H₂O₂ production.^{20–23} Furthermore, the reduction of ABTS^{•-} to ABTS²⁻ (0.68 V vs NHE)²⁴ occurs at nearly the same potential as the reduction of O₂ to H₂O₂ (0.70 V vs NHE).²⁵

Received: October 5, 2016 Published: November 30, 2016

Figure 1. Plot of relative [ABTS^{•-}] vs time, which shows the reduction of ABTS^{•-} to ABTS²⁻ following (A) the addition of **Ru1** and NAD⁺ (red line), NADH (blue line), or **Ru1** without NAD⁺ as a control (dotted green line), (B) two additional 50 μ M ABTS^{•-} aliquots (*) after the initial reduction by **Ru1** and NAD⁺, or (C) two additional 10 μ M ABTS^{•-} aliquots (*) after the initial reduction by NADH, followed by **Ru1** and NAD⁺ ([§]). Conditions: [**Ru1**]₀ or [NADH]₀ = 5 μ M, [ABTS^{•-}]₀ = 50 μ M, [NAD⁺]₀ = 25 mM, PBS (pH 7.4), 25 °C.

Therefore, from a thermodynamic perspective, the reactivity of Ru–H with $ABTS^{\bullet-}$ can provide insight into its reactivity with O_2 .

We recently reported the catalytic reduction of ABTS^{•–} to ABTS^{2–} in aqueous solution using biologically relevant alcohols as terminal reductants, including arabinose, a diastereomer of ribose (Scheme 2B).²⁶ Subsequent kinetic studies elucidated the mechanism: in aqueous solution, **Ru1** converts to Ru–aquo complex **I**_A, followed by ligand exchange with a nontertiary alcohol (R¹–CHOH–R²) and deprotonation to afford Ru–alkoxide species **I**_B, which then undergoes β -hydride elimination (**TS**_{B/C}) to generate the catalytically active Ru–H intermediate **I**_C that reduces ABTS^{•–}.²⁷ We reasoned that a ribose subunit of NAD⁺ could likewise undergo β -hydride elimination to produce **I**_C, whose presence could be inferred from the reduction of ABTS^{•–} to ABTS^{2–}.

Addition of 5 μ M Ru1 to 50 μ M ABTS^{•-} in phosphate buffered saline (PBS, pH 7.4) followed by the addition of 25 mM NAD⁺ produced an 87% decrease in radical absorbance within 30 min (Figure 1A, red line) that was 100% complete within 45 min. The UV/vis spectrum after 45 min confirmed a 1:1 correlation between $ABTS^{\bullet-}$ consumed and $ABTS^{2-}$ produced (Figure S1). Attempts to characterize the NAD⁺ oxidation product were unsuccessful, due to the low concentration constraints of the ABTS^{•-} reduction reaction, but calorimetric and computational studies by others suggest that dehydrogenation of the -CHOHmoiety at the ribose 2'-position would be thermodynamically the most favorable.^{28,29} No radical reduction occurred in the presence of 5 µM Rul alone (Figure 1A, green line), which revealed that Ru1 by itself could not reduce ABTS^{•-}. Similarly, no ABTS^{•-} reduction was observed in the absence of Ru1, even with NAD⁺ concentrations as high as 50 mM, which demonstrated that NAD⁺ by itself could not reduce ABTS^{•-}. However, addition of 5 μ M NADH produced a rapid (within mixing time) 18% decrease in radical absorbance (Figure 1A, blue line), consistent with NADH functioning as a two e reductant. After the initial decrease, no additional ABTS*reduction was observed beyond normal thermal decay.

To determine if **Ru1** remained catalytically active after the reduction of 10 equiv of ABTS^{•-}, two subsequent aliquots of 50 μ M ABTS^{•-} were added (*) and [ABTS^{•-}] decreased to zero each time (Figure 1B). The time necessary for complete ABTS^{•-} reduction increased with each successive aliquot due to the fact that ABTS²⁻ inhibits **Ru1**-catalyzed ABTS^{•-} reduction.²⁷ After the initial decrease produced by NADH, however, addition of 10 μ M ABTS^{•-} aliquots (*) only increased absorbance proportional to the [ABTS^{•-}] in each aliquot (Figure 1C), which indicated that the reducing ability of NADH had been exhausted.

Treatment of this solution containing 60 μ M ABTS^{•-} with 5 μ M **Ru1** and 25 mM NAD⁺ ([§]), produced complete ABTS^{•-} reduction within 1 h.

The ability of **Ru1** to catalyze ABTS^{•-} reduction was assayed with the individual components of NAD⁺: nicotinamide, adenine, and ribose. No ABTS^{•-} reduction occurred upon treatment of 50 μ M ABTS^{•-} and 5 μ M **Ru1** with either 25 mM nicotinamide or 1.0 mM adenine, which indicated that neither component afforded NAD⁺ its terminal reductant ability. In contrast, the addition of 25 mM D-ribose or 1.0 mM D-ribose phosphate produced complete ABTS^{•-} reduction within 20 min (Figures S2–S3). The faster reactivity with D-ribose phosphate is consistent with the higher affinity of cationic I_A for anionic Dribose phosphate than for neutral D-ribose. Collectively, these results demonstrated that the terminal reductant function of NAD⁺ is derived from its ribose subunits.

The kinetics of Ru1-catalyzed ABTS^{•-} reduction with NAD⁺ were analyzed for consistency with the mechanism in Scheme 2. Increasing the solution pH led to faster ABTS^{•-} reduction, with no reduction observed in pure H_2O (Figure S4), which indicated that H⁺ dissociation was necessary and was consistent with the conversion of I_A to I_B. Varying the reaction temperature revealed $\Delta S^{\ddagger} = 17.1 \pm 4.9$ cal mol⁻¹ K⁻¹ (Figure S5), which demonstrated that disorder was increasing during the rate-determining step and suggested ligand fragmentation and dissociation (i.e., $TS_{B/C}$ and $R^1-C(=O)-R^2$ elimination, respectively) was occurring. The ΔS^{\ddagger} value observed with NAD⁺ also fell within the range of values measured for Ru1-catalyzed ABTS*- reduction with other nontertiary alcohols ($\Delta S^{\ddagger} = 11.4 - 32.8$ cal mol⁻¹ K⁻¹).² Collectively, these results were consistent with the formation of I_C via β -hydride elimination from a ribose subunit coordinated to Ru and dissociation of the oxidized NAD⁺.

The observed rate constant (k_{obs}) for **Ru1**-catalyzed ABTS^{•–} reduction with NAD⁺ was 2.53-fold lower in deutero PBS (pD 7.4) than in proteo PBS. This ABTS - reduction reaction exhibits a solvent kinetic isotope effect (KIE) of 1.74, which reflects the role of H_2O as an H^+ acceptor in the conversion of I_A to I_B and I_C back to I_A .²⁷ Dividing the proteo/deutero k_{obs} ratio of 2.53 by 1.74 yielded the O-H/D KIE value of 1.45 for NAD⁺. Breakage of an O-H bond in a ribose subunit of NAD⁺ is essential for the formation of I_B , whereby H/D substitution causes the activation barrier to increase and the k_{obs} for ABTS^{•-} reduction to decrease. In our previous mechanistic study, the smaller O-H/D KIE value for EtOH (2.92) compared to i-PrOH (4.18) reflected the lower pK_a of EtOH (15.9 vs 16.5 for *i*-PrOH).²⁷ Increasing the acidity of the O–H group will increase the $O^{\delta-}-H^{\delta+}$ bond polarization, which will lower the activation barrier to H⁺ dissociation and thus render the O-H bond less sensitive to H/D isotopic substitution. The substantially lower O-H/D KIE value for NAD⁺ compared to EtOH and *i*-PrOH was thus consistent with the substantially greater acidity of ribose $(pK_a = 11.8)$.³⁰

We next sought to demonstrate that NAD⁺ could serve as a reductant under conditions in which the biological supply of NADH had been exhausted. Treatment of a 50 μ M ABTS^{•-} solution (Figure 2, *i*) with 18 μ M NADH caused a rapid (within

Figure 2. Plot of relative $[ABTS^{\bullet-}]$ vs time (*i*), which shows the 2:1 stoichiometric reduction of $ABTS^{\bullet-}$ by NADH (*ii*), followed by the catalytic reduction of $ABTS^{\bullet-}$ by **Ru1** and NAD^+ (*iii*). Conditions: [**Ru1** $]_0 = 5 \,\mu$ M, or $[NADH]_0 = 18 \,\mu$ M, $[ABTS^{\bullet-}]_0 = 50 \,\mu$ M, $[NAD^+]_0 = 12.5 \text{ mM}$, PBS (pH 7.4), 25 °C.

mixing time) decrease in radical absorbance corresponding to the reduction of $34 \,\mu\text{M}$ ABTS^{•-} (Figure 2, *ii*). This ABTS^{•-}/NADH reaction stoichiometry of 1.9 was consistent with NADH functioning as a two e⁻ reductant. Importantly, $16 \,\mu\text{M}$ ABTS^{•-} as not reduced, and no further decreases in [ABTS^{•-}] occurred. Subsequent addition of $5 \,\mu\text{M}$ Ru1 and 12.5 mM NAD⁺ caused the radical absorbance to decrease to zero within 22 min, signifying complete reduction of the remaining ABTS^{•-} (Figure 2, *iii*). The ratio of NAD⁺/NADH used in this experiment (694:1) was consistent with the ratio found in cells, ¹²⁻¹⁵ which demonstrates that, under conditions that exhausted the free cellular NADH supply, Ru1 could utilize the substantially more abundant cellular stores of free NAD⁺ to alleviate or prevent oxidative stress.

In the presence of horseradish peroxidase (HRP), addition of H_2O_2 to $ABTS^{2-}$ in PBS results in $ABTS^{\bullet-}$ formation, and the kinetics of this reaction can be used to evaluate the ability of an antioxidant to prevent or mitigate the onset of oxidative stress.³¹ Inclusion of 5 μ M **Ru1** and 25 mM NAD⁺ significantly inhibited ABTS^{•-} formation, which never exceeded 4.8 μ M (Figure 3A, red line). After 15 min, the radical absorbance began to decrease, and complete ABTS^{•-} reduction was observed 6.6 min later. In

contrast, 5 μ M NADH completely inhibited ABTS^{•–} formation for 3.3 min, whereupon the absorbance gradually increased to a maximum of 11 μ M (Figure 3A, blue line). This concentration was 7 μ M lower than the maximum observed in the control experiment and was consistent with NADH functioning as a two e^- reductant. The subsequent gradual decrease was due to normal ABTS^{•–} thermal decay.

After complete ABTS^{•-} reduction in the presence of **Ru1** was observed following the first H₂O₂ aliquot, two additional 10 μ M H₂O₂ aliquots ([#]) were introduced and [ABTS^{•-}] peaked at 6.4 μ M before being reduced completely each time (Figure 3B), demonstrating that the catalyst and terminal reductant were both still present and active. Different behavior was observed with NADH after [ABTS^{•-}] peaked. Adding a second H₂O₂ aliquot ([#]) caused [ABTS^{•-}] to increase to 17 μ M (Figure 3C), corresponding to 94% ABTS²⁻ oxidation (complete oxidation = 18 μ M).²⁶ No change in absorbance was produced by the third H₂O₂ aliquot ([#]), consistent with all of the ABTS²⁻ having been completely oxidized by the previous H₂O₂ aliquots. Subsequent treatment of this solution with 5 μ M **Ru1** and 25 mM NAD⁺ ([§]) resulted in complete ABTS^{•-} reduction within 45 min.

To demonstrate that the reactivity exhibited by **Ru1** and NAD⁺ in Figure 3 derived specifically from ABTS^{•-} reduction, two 10 μ M aliquots of chemically synthesized ABTS^{•-} (*) were added after the initial reaction with H₂O₂ was complete (Figure 4, red line). The [ABTS^{•-}] immediately increased by 8.8 μ M

Figure 4. Plot of [ABTS^{•-}] vs time, which shows the oxidation of ABTS²⁻ to ABTS^{•-} in situ by HRP and H₂O₂ followed by subsequent ABTS^{•-} reactivity in the presence of **Ru1** and NAD⁺ (red line) or NADH (blue line). After the initial reaction of **Ru1** and NAD⁺ or NADH had completed, two additional aliquots of 10 μ M ABTS^{•-} (*) were introduced. For the NADH experiment (blue line), 5 μ M **Ru1** and 25 mM NAD⁺ were added ([§]) after the final aliquot of 10 μ M ABTS^{•-}. Conditions: [HRP]₀ = 10 nM, [**Ru1**]₀ or [NADH]₀ = 5 μ M, [H₂O₂]₀ = 10 μ M, [ABTS²⁻]₀ = 20 μ M, [NAD⁺]₀ = 25 mM, PBS (pH 7.4) at 25 °C.

Figure 3. (A) Plot of $[ABTS^{\bullet-}]$ vs time, which shows the oxidation of $ABTS^{2-}$ to $ABTS^{\bullet-}$ in situ by HRP and H_2O_2 in the presence of **Ru1** and NAD^+ (red line), NADH (blue line), or **Ru1** without NAD⁺ as a control (dotted green line). Plot of $[ABTS^{\bullet-}]$ vs time, which shows $ABTS^{\bullet-}$ formation following two additional aliquots of $10 \,\mu$ M H_2O_2 ([#]) in the presence of (B) **Ru1** and NAD⁺ or (C) NADH. For the NADH experiment shown in (C), **Ru1** and NAD⁺ were added ([§]) after the final aliquot of $10 \,\mu$ M H_2O_2 . Conditions: $[HRP]_0 = 10 \,n$ M, $[Ru1]_0$ or $[NADH]_0 = 5 \,\mu$ M, $[H_2O_2]_0 = 10 \,\mu$ M, $[ABTS^{2-}]_0 = 20 \,\mu$ M, $[NAD^+]_0 = 25 \,m$ M, PBS (pH 7.4) at 25 °C.

each time, then decreased to zero 19 and 29 min after addition of the first and second ABTS^{•–} aliquots, respectively. We had previously shown that ABTS^{2–} is an inhibitor for **Ru1**-catalyzed ABTS^{•–} reduction with nontertiary alcohols,²⁷ and given that the concentration of ABTS^{2–} increased as each successive ABTS^{•–} aliquot was reduced, it was unsurprising that the time required for complete ABTS^{•–} reduction likewise increased. With the NADH experiment, however, the first and second ABTS^{•–} aliquots produced 9.4 and 9.3 μ M increases in [ABTS^{•–}], respectively, that were stable over time (Figure 4, blue line). Subsequent addition of 5 μ M **Ru1** and 25 mM NAD⁺ ([§]) then achieved quantitative ABTS^{•–} reduction in less than 39 min.

In summary, NAD⁺ is able to function as a terminal reductant for the Ru1-catalyzed reduction of ABTS⁻⁻ to ABTS²⁻ in aerobic, aqueous solution. Because NAD⁺ typically plays the role of H⁻ acceptor in biological systems, the classical expectation would be that it could not function as an H⁻ donor. However, the ABTS^{•-} reduction reactivity observed with NAD⁺ and Ru1 were highly conserved with our previous studies using other nontertiary alcohols as terminal reductants,^{26,27} which suggested that the same mechanism was operative with NAD⁺. The key intermediate responsible for ABTS^{•-} reduction with NAD⁺ and Ru1 was therefore inferred to be a Ru-H intermediate formed via β -hydride elimination from a ribose subunit coordinated to Ru, whereby this ability of NAD⁺ to function as an H⁻ donor would give rise to its observed ability to function as a reductant. Previous studies by others have revealed that transition metalhydride complexes formed via H⁻ transfer from NADH can react with atmospheric O₂ to generate $H_2O_{2^{\prime}}^{32,33}$ which in turn can produce cytotoxic effects against cancer cells.^{7–9,34–36} Given that free NAD⁺ is 640–1100 times more abundant in cells than free NADH,^{12–15} we believe that a catalyst that can utilize NAD⁺ as an H⁻ source will be able to generate significantly higher H₂O₂ levels and thus exhibit substantially greater anticancer potency. The biological applications of Ru1 will be detailed in subsequent reports.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b10451.

Detailed experimental procedures, additional UV-visible spectra and kinetics plots (PDF)

AUTHOR INFORMATION

Corresponding Author

*atennys@clemson.edu

ORCID[©]

Andrew G. Tennyson: 0000-0002-8593-2979

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (DMR-1555224). We thank Dr. A. Mangalum for prior work with **Ru1** and helpful discussions.

REFERENCES

(1) Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. *Environ. Sci. Technol.* **2010**, *44*, 15–23. (2) Falkowski, P. G.; Fenchel, T.; Delong, E. F. Science 2008, 320, 1034-1040.

(3) Hirst, J. Annu. Rev. Biochem. 2013, 82, 551-575.

(4) Nissen, M. S.; Youn, B.; Knowles, B. D.; Ballinger, J. W.; Jun, S.-Y.; Belchik, S. M.; Xun, L.; Kang, C. *J. Biol. Chem.* **2008**, *283*, 28710–28720.

(5) Talfournier, F.; Colloc'h, N.; Mornon, J.-P.; Branlant, G. *Eur. J. Biochem.* **1998**, 252, 447–457.

(6) Deng, H.; Zheng, J.; Clarke, A.; Holbrook, J. J.; Callender, R.; Burgner, J. W., II *Biochemistry* **1994**, *33*, 2297–2305.

(7) Soldevila-Barreda, J. J.; Romero-Canelón, I.; Habtemariam, A.; Sadler, P. J. *Nat. Commun.* **2015**, *6*, 6582.

(8) Ritacco, I.; Russo, N.; Sicilia, E. Inorg. Chem. 2015, 54, 10801-10810.

(9) Liu, Z.; Sadler, P. J. Acc. Chem. Res. 2014, 47, 1174-1185.

(10) Fukuzumi, S.; Suenobu, T. Dalton Trans. 2013, 42, 18-28.

(11) Voss, C. V.; Gruber, C. C.; Faber, K.; Knaus, T.; Macheroux, P.; Kroutil, W. J. Am. Chem. Soc. 2008, 130, 13969–13972.

(12) Zhang, Q.; Piston, D. W.; Goodman, R. H. Science 2002, 295, 1895–1897.

(13) Hedeskov, C. J.; Capito, K.; Thams, P. Biochem. J. 1987, 241, 161–167.

(14) Veech, R. L.; Guynn, R.; Veloso, D. Biochem. J. 1972, 127, 387–397.

(15) Williamson, D. H.; Lund, P.; Krebs, H. A. *Biochem. J.* **1967**, *103*, 514–527.

(16) Kruger, N. J.; von Schaewen, A. Curr. Opin. Plant Biol. 2003, 6, 236–246.

(17) Besson, M.; Gallezot, P. Catal. Today 2000, 57, 127-141.

(18) Arts, S. J. H. F.; Mombarg, E. J. M.; van Bekkum, H.; Sheldon, R. A. *Synthesis* **1997**, *6*, 597–613.

(19) Saburi, M.; Ishii, Y.; Kaji, N.; Aoi, T.; Sasaki, I.; Yoshikawa, S.; Uchida, Y. *Chem. Lett.* **1989**, *18*, 563–566.

(20) A 3.3 μ M decrease in [ABTS^{•-}] would produce a measurable change in absorbance (0.050), but a comparable absorbance change would require a 1.1 mM increase in [H₂O₂]. If a catalyst concentration of 5 μ M is used, it would be possible to observe the reduction of less than 1 equiv of ABTS^{•-}, but O₂ reduction would not be observable until more than 200 equiv of H₂O₂ had been produced.

(21) In aqueous buffer, $\varepsilon = 15,000 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 734 \text{ nm}$ for ABTS^{•-} vs $\varepsilon = 43.6 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 240 \text{ nm}$ for H₂O₂.

(22) Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radical Biol. Med. **1999**, 26, 1231–1237.

(23) Yusa, K.; Shikama, K. Biochemistry 1987, 26, 6684-6688.

(24) Scott, S. L.; Chen, W.-J.; Bakac, A.; Espenson, J. H. J. Phys. Chem. 1993, 97, 6710-6714.

(25) Jungwirth, U.; Kowol, C. R.; Keppler, B. K.; Hartinger, C. G.; Berger, W.; Heffeter, P. Antioxid. Redox Signaling **2011**, *15*, 1085–1127.

(26) Htet, Y.; Tennyson, A. G. Chem. Sci. 2016, 7, 4052–4058.

(27) Htet, Y.; Tennyson, A. G. Angew. Chem., Int. Ed. 2016, 55, 8556–8560.

(28) Achrainer, F.; Emel'yanenko, V. N.; Tantawy, W.; Verevkin, S. P.; Zipse, H. J. Phys. Chem. B **2014**, 118, 10426–10429.

(29) Achrainer, F.; Zipse, H. Molecules 2014, 19, 21489-21505.

(30) Sen, S.; Pal, U.; Maiti, N. C. J. Phys. Chem. B 2014, 118, 909-914.

(31) Pitulice, L.; Pastor, I.; Vilaseca, E.; Madurga, S.; Isvoran, A.; Cascante, M.; Mas, F. J. Biocatal. Biotransformation **2013**, *2*, 1–5.

(32) Suenobu, T.; Shibata, S.; Fukuzumi, S. Inorg. Chem. 2016, 55, 7747-7754.

(33) Maid, H.; Böhm, P.; Huber, S. M.; Bauer, W.; Hummel, W.; Jux, D. N.; Gröger, H. Angew. Chem., Int. Ed. **2011**, *50*, 2397–2400.

(34) Liu, Z.; Romero-Canelón, I.; Qamar, B.; Hearn, J. M.; Habtemariam, A.; Barry, N. P. E.; Pizarro, A. M.; Clarkson, G. J.; Sadler, P. J. Angew. Chem., Int. Ed. **2014**, 53, 3941–3946.

(35) Fu, Y.; Romero, M. J.; Habtemariam, A.; Snowden, M. E.; Song, L.; Clarkson, G. J.; Qamar, B.; Pizarro, A. M.; Unwin, P. R.; Sadler, P. J. *Chem. Sci.* **2012**, *3*, 2485–2494.

(36) Dougan, S. J.; Habtemariam, A.; McHale, S. E.; Parsons, S.; Sadler, P. J. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 11628–11633.